Что такое Интернет вещей: существующие технологии

Облачный сервис получает данные о скорости тысяч автомобилей и строит карту загруженности дорог города, помогая автомобилистам найти быстрый маршрут. Браслет на ноге юноши-футболиста отслеживает его активность во время тренировки и загружает данные в приложение, отбирающее наиболее успешных юниоров в национальную сборную по футболу. «Умные» счетчики передают показания онлайн, сообщают об утечках, помогают сэкономить на ресурсах и снизить оплату ЖКХ. А конвейеры с интеллектуальной начинкой предупреждают оператора о симптомах приближающегося износа агрегата, предотвращают остановку производства и снижают издержки на ремонт.

Все это — «Интернет вещей» или Internet of Things (IoT).

Содержание

  1. Как появился «Интернет вещей»
  2. Интернет вещей «на пальцах»
    1. Пример 1. Яндекс.Навигатор — тоже IoT
    2. Пример 2. Спортивный IoT
    3. Пример 3. «Умные» счетчики
    4. Пример 4. Сельское хозяйство
    5. Пример 5. «Умные» заводы
    6. Пример 6. «Носимый» IoT
  3. Интернет вещей будущего
  4. Машины требуют свой WiFi
    1. LPWAN — будущее IoT концепции
  5. Резюме
    1. LPWAN — двигатель «дальнобойного» беспроводного IoT

Как появился «Интернет вещей»

Концепция Интернета вещей была предугадана в начале XX века Николой Тесла — физик пророчил радиоволнам роль нейронов «большого мозга», управляющего всеми предметами. А инструменты его контроля должны будут легко умещаться в кармане. Великий изобретатель не был фантастом, просто он понимал то, что его современники не могли и представить.

Что такое Интернет вещей

Сто лет спустя термин «Интернет вещей» ввел в широкий оборот сотрудник исследовательского агентства при Массачусетском технологическом институте Кевин Эштон. Он предложил увеличить эффективность логистических процессов без вмешательства человека: с помощью радиодатчиков собирать информацию о наличии товаров на складах предприятия и отслеживать их движение к торговым точкам. Каждая метка отправляла в сеть данные о своем местонахождении в настоящий момент времени. Использование RFID-меток ускорило реакцию поставщиков и ритейлеров на изменение спроса и предложения: товары не лежали на складе, а отправлялись туда, где они действительно необходимы. Эффект от введения маркировки оценили, и с января 2007 года все поставщики крупнейшей американской розничной сети производят товары только с радиометками.

Концепция Интернета вещей базируется на принципе межмашинного общения: без вмешательства человека электронные устройства «общаются» между собой. Интернет вещей — это автоматизация, но более высокого уровня. В отличие от «умных» домов узлы системы используют TCP/IP-протоколы для обмена данными через каналы глобальной сети Интернет.

Такой метод коммуникации дает серьезное преимущество — возможность объединять системы между собой, строить «сеть сетей». Это позволяет изменить бизнес-модели отраслей и даже экономики целых стран.

Интернет вещей не только меняет существующие правила, но и формирует новые правила экономики совместного использования» (shared economy), исключая посредников из бизнес-модели.

Менее чем за 20 лет Интернет вещей стал трендом рынка информационных технологий. Аналитики прогнозируют колоссальное количество IoT устройств через несколько лет — свыше 50 миллиардов. Развитие производства электронных компонентов позволяет «штамповать» миллионы дешевых чипов для всевозможных устройств. От радиочипов, нанесенных на складские коробки, IoT трансформировался в глобальную «интернетизацию» окружающих нас предметов, воспринимаемый людьми как глобальная «оцифровка» реальности.

Интернет вещей «на пальцах»

Для широкой публики Интернет вещей — это холодильник, публикующий фото ваших продуктов в Instagram, или стиральная машина, которая постит в Facebook: «У меня была сегодня чумовая стирка». Из 28 миллиардов ожидаемых подключений менее половины придется на пользовательские гаджеты, которые составляют «customer IoT»: смартфоны и планшеты, носимые датчики для фитнеса и амбулаторной медицины.

Более 15 миллиардов устройств будут работать в бизнесе и промышленности: разнообразные датчики для оборудования, терминалы для продаж, сенсоры на производственных агрегатах и общественном транспорте.

Интернет вещей станет тем инструментом, с помощью которого можно дешево, быстро и масштабно решать конкретные бизнес-задачи в конкретных отраслях.

Промышленный IoT (Industrial IoT, IIoT) объединяет концепцию межмашинного общения, использование BigData и проверенные технологии автоматизации производства. Ключевая идея IIoT в превосходстве «умной» машины над человеком в точном, постоянном и безошибочном сборе информации. Интернет вещей повысит уровень контроля качества продукции, выстроит процесс бережливого и экологичного производства, обеспечит надежные поставки сырья и оптимизирует работу заводского конвейера.

Интернет людей — всемирная паутина, которая «высасывает» не только наши деньги, но и время. Мы проводим по несколько часов в неделю в соцсетях, онлайн-играх или на сайтах. Покупаем в интернет-магазинах вещи, которые нам зачастую не нужны, просто потому, что это легко и доступно — в два клика.

В отличие от традиционного «человеческого» интернета IoT применяется для рационального и практичного подхода. Его ключевая задача — автоматизация, оптимизация, сокращение материальных и временных затрат.

Применение IoT в промышленной индустрии и транспорте сокращает затраты за счет снижения аварийности, уменьшения потерь сырья и количества использованных ресурсов. В сфере энергетики — повышает эффективность выработки и распределения электроэнергии.

Интернет вещей экономит не только деньги, но и время: машины заменили человека на рутинной работе и освободили от выполнения рискованных или стандартных задач. Интеллектуальные системы следят за промышленным конвейером, считают товар на складах и регулируют движение вместо человека. В любую погоду, круглосуточно и без выходных.

Нас окружают разнообразные «подключенные» устройства: на улице работают системы безопасности и экомониторинга. Интернет вещей начинает использоваться в быту, в ЖКХ и индустриальной сфере, транспорте, сельском хозяйстве и медицине.

Пример 1. Яндекс.Навигатор — тоже IoT

Знакомый всем пример — Яндекс.Навигатор. Водители по всей России и СНГ пользуются этим сервисом. Смартфоны и планшеты передают координаты, направление движения и скорость в службу Яндекс, а принятая от пользователей информация анализируется на сервере компании. Получив сведения о заторе, приложение автоматически предлагает водителю варианты объезда и отображает маршрут на экране телефона или планшета. Мобильные устройства, центры обработки данных и приложение Яндекса обмениваются данными без вмешательства человека, являя собой отличный пример Интернета вещей.

Как результат — водители тратят меньше времени в пробках, выбирая оптимальные маршруты объезда.

Еще немного и искусственный интеллект Яндекса начнёт перераспределять нагрузку на дорогах городов. Учитывая накопленную статистику, он будет предлагать такие маршруты, которые оптимально загрузят магистрали и минимизируют пробки.

Яндекс.Навигатор — тоже IoT

Пример 2. Спортивный IoT

В спорте Интернет вещей используют для накопления статистики и анализа данных. Применение IoT-решений разнообразно: от мобильных приложений для любителей утренних пробежек, следящих за расходом калорий, до производительных информационно-вычислительных систем в профессиональном спорте.

Носимые трекеры

Командное IoT-решение отслеживает состояние отдельных спортсменов и всего коллектива. Информация о перемещении, пульсе считываются датчиками, встроенными в жилет, надетый игроком. Координаты и медицинская телеметрия отправляются на облачную платформу, снабжая оперативной информацией руководство и вспомогательные службы команды. Тренер строит тактику игры, не дожидаясь тайм-аута для оценки состояния коллектива и переигрывает соперников за счет быстрого реагирования на окружающую обстановку.

Командное IoT-решение

Ранее у тренерского состава и спортивных аналитиков не было иного выбора, кроме как просматривать после игры заметки и десятки часов видеозаписи для оценки поведения игрока на поле и его работоспособности. Теперь информация предоставляется онлайн и голевой момент матча всегда можно «вытащить» из хранилища и проанализировать. Интернет вещей обрел популярность не только среди тренеров, но и у медиков — бригады оказания первой помощи мгновенно реагируют на критические показания здоровья подопечных.

Пример 3. «Умные» счетчики

В жилищно-коммунальном хозяйстве IoT-технологии нашли применение в системах интеллектуальной диспетчеризации — «умных» приборов учета ресурсов. Подключенные к Интернету счетчики передают показания в «облако», а диспетчер видит расход воды, электричества или газа в отдельном доме, квартале или в целом городе. Это дает возможность, не заглядывая в квартиры собственников, в режиме реального времени, иметь полную картину потребления ресурсов, удаленно управлять приборами учета, оперативно выставлять счета жильцам. Без обходчиков, без обработчиков и без временных потерь.

Такой подход позволит изменить механизм учета ресурсов. Сегодня управляющие компании собирают показания с приборов учета, обрабатывают данные, выставляют счета и собирают оплату за ЖКУ. В случае внедрения «умных» счетчиков в масштабах города, структуры, обслуживающие жилые дома, превращаются в ненужных посредников и «выходят из игры». Что сегодня мы и наблюдаем в некоторых регионах России, где водоканалы переходят на прямые договоры с жильцами. Электросетевые компании, кстати, уже давно применяют такую схему расчетов, но по инерции нанимают обходчиков или требуют данные с жильцов.

Прямой диалог между счетчиками в домах и «ресурсниками» стал возможен благодаря IoT-решениям — беспроводной автоматизированной диспетчеризации. Это отличный пример того, как Интернет вещей меняет бизнес-модель в отрасли.

Аналогично — UBER, который за счет концепции Интернета вещей исключил таксомоторные компании из бизнес-модели частного извоза. Крупные структуры стали просто не нужны и сейчас клиент напрямую общается с водителем.

За счет точного учета, оповещениях о перерасходе ресурсов или авариях подключенные к Интернету приборы учета ЖКХ сохраняют до 30% ресурсов в каждом многоквартирном доме. А помимо удобства, дополнительное преимущество для конечного потребителя — сэкономленные на содержании ненужной «прослойки» деньги.

Скриншот личного кабинета «СТРИЖ.Cloud» с показаниями счетчика воды

Диспетчеризация приборов учета воды и удаленного съема показаний — один из наиболее удачных примеров применения технологии Интернета вещей в сфере жилищно-коммунального хозяйства.

Организации, внедрившие IoT-решения для управления многоквартирными жилыми домами, получили эффективный инструмент контроля и учета ресурсов. Такая система автоматизирует трудоемкие операции по сбору и обработке показаний, которые ранее требовали участия половины штата сотрудников. Имея на руках прозрачные данные, управляющая компания выявляет потери и минимизирует расходы на общедомовые нужды (ОДН).

Пример 4. Сельское хозяйство

Более половины производителей томатов и треть хлопководов Израиля используют систему для мониторинга влажности, температуры грунта и других характеристик почвы. Датчик, «закрепленный» за отдельным растением или участком с посевами, отправляет информацию на облачный сервер, откуда данные поступают оператору, выводя на экран состояние саженца и рекомендации по улучшению его плодоносных свойств.

IoT в агропромышленности

В США сформировали интересный симбиоз такой «пахучей» сферы агротехники как удобрение полей и IoT. Фермер оснастил трактора-распрыскиватели, обслуживающие угодья в радиусе 121 километра от станции, решением на базе беспроводных технологий. Водитель-оператор насосной установки удаленно отслеживает и распределяет подачу органических удобрений на поля, а владелец контролирует расход с экрана своего смартфона.

Пример 5. «Умные» заводы

Зарубежные владельцы заводов уже осознали преимущества IoT в сокращении расходов и увеличении прибыльности индустриального бизнеса. В электроэнергетике и легкой промышленности интерес к применению Интернета вещей есть. С помощью IoT-технологий операторы морских ветрогенераторов удаленно контролируют износ роторов и турбин, отслеживают их производительность. За счет своевременного обслуживания минимизируется риск остановки «ветряков» и отпадает необходимость в отправке бригад на удаленные морские платформы.

IoT в промышленности

Швейцарская компания, выпускающая станки и двигатели, реализовала мечту производственных инженеров — проведение упреждающего техобслуживания (ТО).

Более 5000 единиц оборудования на производственных площадках подключили к IoT-платформе изготовителя, сигнализирующей о необходимости ТО для профилактики возможной поломки. Несколько лет назад компания командировала выездные бригады техников для диагностики на местах.

Сейчас эксплуатант станка или электродвигателя отслеживает состояние оборудования онлайн и вовремя узнает о возможных авариях. Такой «проактивный» мониторинг сократил расходы за счет снижения издержек и ликвидации простоев. Традиционно, ППР (планово-предупредительные ремонты) требовали остановки производственных линий и организовывались по графику, независимо от того, была в них необходимость или нет.

Внедрение IoT-технологии позволило проводить упреждающее техобслуживание тогда, когда оно действительно нужно, и ремонтировать машины до того, как они сломаются. Интернет вещей обеспечил не только непрерывность производства, но и сэкономил на планировании предупредительных работ — затраты на планирование составляют 30-40% от объема ремонтного фонда предприятия.

IoT в промышленности

В ближайшее время бизнес станет первым и основным потребителем IoT-технологий. Топ-менеджеры корпораций рассматривают Интернет вещей в первую очередь как инструмент для снижения расходов и увеличения производительности. Предприниматели хотят использовать инновационную концепцию для вхождения в новые рынки и расширить свой ассортимент за счет использования подключенных устройств.

Промышленники понимают: новые технологии оптимизируют производственный процесс и уберут из него человеческий фактор, а вместе с ним и лишние риски.

Пример 6. «Носимый» IoT

Крупные ИТ-компании начали инвестировать в развитие медицинского Интернета вещей. Одно из таких решений отслеживает динамику болезни и выздоровления пациентов в режиме 24/7 посредством носимого на теле датчика. Мониторинг происходит в режиме реального времени, начиная от сбора показаний в стационаре и дома, завершая направлением данных лечащему врачу и в лаборатории для анализа и принятия решений.

В медицине есть проекты, развернутые в рамках лечебного учреждения и предупреждающие персонал об истощении запаса медикаментов или инструментов.

IoT в медицине

В обеспечении физической безопасности применение IoT-концепции скорее экзотично, чем привычно. В октябре 2016 года технологию Интернета вещей в прямом смысле «взяла на вооружение» оборонная промышленность — для охраны Крымской военно-морской базы Минобороны РФ закупило комплекс охраны «Часовой-1».

Комплекс, в состав которого входят вибробраслеты, гарантирует безопасность бойцов, охраняющих объекты и проверяющих автотранспорт на «блоках». Каждый браслет оснащен датчиком «неподвижности». Как только часовой прекращает движение более чем на 30 секунд, система посылает на его браслет вибросигнал. Если в течение 15 секунд после предупреждения боец не «оживет» — в караульном помещении объявляется тревога.

IoT в службах безопасности

IoT — это новый этап развития сети Интернет, который проникает в ранее недоступные сферы, привнося качественные изменения, делая жизнь людей проще, а работу компаний — эффективней.

Интернет вещей будущего

IoT стал всемирным трендом, и скоро возможность «интернетизации» станет обязательным требованием для продуктов и услуг широкого потребления. Устройства будут выходить с конвейера с уже встроенными интеллектуальными и коммуникационными возможностями.

За счет увеличения масштаба производства и удешевления компонентной базы стоимость умных устройств снизится до минимума. IoT проникнет в автомобили, грунт, море и реки, в тело человека. Датчики станут настолько миниатюрными, что будут помещаться в мелких бытовых предметах или продуктах питания.

Соответственно устройствам уменьшатся в размерах и аккумуляторы, а затем они и вовсе исчезнут — «умные» датчики научатся получать энергию из окружающей среды: от вибрации, света или воздушных потоков и станут полностью автономными.

Интернет вещей станет гетерогенной средой, которая будет существовать как отдельный живой организм. Наступит время машин.

Машины требуют свой WiFi

Сложности с компонентной базой ушли в прошлое, появился новый вызов: необходимо объединить миллиарды «умных» приборов в единую сеть.

Интеллектуальный станок, датчик температуры масла на промышленном агрегате, смарт холодильник — всем этим устройствам необходима среда для общения. В противном случае они так и останутся «немыми»: обычным счетчиком или датчиком, отличающимся от своих собратьев только «космическим» дизайном.

Машины требуют свой WiFi

Если оставить прогнозы о «количестве устройств Интернета вещей к 2020 году» ясно, что IoT-индустрия растет. Инженерам уже не интересно, сколько, 50 миллиардов датчиков и смартфонов будет в сети или 100 миллиардов. Порядок уже ясен, как и цель — подключение «армии» устройств к Интернету.

Для передачи данных разрабатывалось множество протоколов, но каждый из них был «заточен» под определенную задачу: GSM для голосового общения, GPRS для обмена данными с мобильных телефонов, ZigBee — создания локальной сети и управления «умными» домами, а Wi-Fi для беспроводных локальных сетей с высокой скоростью передачи данных.

Эти технологии могут быть применены для решения нецелевых задач и по-разному с ними справляться.

К примеру, Яндекс.Навигатор сможет работать через GPRS/3G/4G и никакая другая связь для такого приложения не подойдет. Мы, конечно, можем подключить смартфон к Wi-Fi и запустить Навигатор, но как только автомобиль отъедет на 100 метров от точки доступа — приложение «закончится». А в «умном» доме не «приживутся» автономные GPRS-датчики — через два дня в них сядут батарейки. Поэтому в интеллектуальном жилище лучше всего подойдет энергоэффективный ZigBee.

Набирая обороты, Интернет вещей выдвигает свои требования:

  1. Небольшой объем данных: датчикам и сенсорам не нужно передавать мега- и гигабайты, как правило это биты и байты.
  2. Энергоэффективность: подавляющая часть датчиков автономны и должны будут работать годами.
  3. Масштабируемость: в сети должны уживаться миллионы различных устройств, и добавление одного-двух миллионов не должно вызывать сложностей.
  4. Глобальность: нужен широкий территориальный охват и как следствие передача информации на большие расстояния.
  5. Проникающая способность: устройства в подвалах, шахтах должны передавать сигнал наружу.
  6. Стоимость устройств: устройства должны быть дешевы и доступны для пользователя, а готовые решения рентабельны для бизнеса.
  7. Простота: принцип «поставил и забыл»: пользователь выберет понятные и дружелюбные устройства.

Казалось бы, сотовые сети — очевидные кандидаты на построение развернутой на десятки километров беспроводной IoT-среды. Однако ни стандарт GSM, ни инфраструктура мобильных операторов изначально не создавались для М2М-диалога. Протоколы сотовой связи предназначены для общения людей: большой объем трафика и высокая скорость обмена данными в густонаселенных районах.

Сравнение беспроводных технологий

Разработчики изначально не предполагали возможность обмена небольшими объемами данных между разнесенными «умными» сенсорами. Датчику с WiFi необходимо постоянное питание, а элемент умного GSM устройства продержится 2-3 недели. Мы не готовы ежемесячно менять батарейки в десятках устройствах или монтировать к ним проводную систему питания.

Подключение всевозможных устройств к мобильным сетям еще можно представить в населенных пунктах, но за пределами оживленных трасс и урбанизированных территорий протоколы GSM, 3G, LTE не позволяют создавать масштабные IoT проекты — слишком дорого разворачивать и обслуживать инфраструктуру сотовой сети.

В городе сотовая связь ограничена низкой проникающей способностью сигнала. А «умные» датчики или счетчики зачастую будут находиться за несколькими стенами, в техколодцах или на цокольных этажах, где уже не берет GSM.

Проникающая способность сигнала XNB

Фундаментом масштабных проектов станет энергоэффективная сеть, которая удовлетворит запросы промышленников, сельхозпроизводителей, государственные компании в масштабности и невысокой стоимости эксплуатации. Интернету вещей нужен стандарт связи с возможностью широкого территориального охвата, высокой энергоэффективностью, дешевой инфраструктурой и не требующей высоких эксплуатационных расходов.

LPWAN — будущее IoT концепции

С учетом перечисленных требований и ограничений, решением проблемы стало использование технологии на стыке высокой дальности и низкого энергопотребления. Она получила название Low-Power Wide-Area Network (сокращенно – LPWAN) или энергоэффективная сеть дальнего радиуса действия.

LPWAN разрабатывался специально для межмашинного общения, и стал двигателем дальнобойного Интернета вещей.

Отсутствие высоких требований к объему передаваемой информации позволило сконцентрироваться на других, более важных параметрах технологии и обеспечить 50 километровую дистанцию взаимодействия между разнесенными устройствами, высокую энергоэффективность, проникающую способность и масштабируемость.

Сравнение технологий беспроводной передачи данных

Дальнобойная и энергоэффективная, LPWAN отлично подходит для IoT, как в бытовом, так и в промышленном секторе, где имеется потребность в автономной передаче телеметрии на дальние расстояния.

LPWAN гораздо лучше соответствует запросам М2М-сетей, чем та же сотовая связь — тысячи квадратных километров могут быть покрыты одной базовой станцией. Построение такой сети проще, а обслуживание — дешевле. Подобный подход становится единственной альтернативой в случае, когда датчики разнесены по большой территории. Как, например, счетчики воды в пределах одного квартала или датчики влажности почвы, размещенные сразу на нескольких полях.

Резюме

Уже сейчас IoT меняет правила игры в отдельных отраслях: проникает в недоступные и невозможные ранее сферы, улучшая качество жизни и увеличивая эффективность бизнеса. Технологии Интернета вещей нашли применение там, где они выгодны бизнесу и удобны людям.

LPWAN — двигатель «дальнобойного» беспроводного IoT

Преимущества LPWAN-технологии хорошо вписываются в потребности масштабного внедрения IoT в промышленности, транспорте, сфере безопасности и десятках других отраслей. Большой радиус действия, высокая автономность конечных устройств, простота развертывания LPWA-сети и низкая стоимость инфраструктуры даст толчок крупномасштабным проектам и развитию Интернета вещей.

Вверх